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The eukaryotic cell division cycle depends on an intricate sequence
of transcriptional events. Using an algorithm based on maximum-
entropy deconvolution, and expression data from a highly syn-
chronized yeast culture, we have timed the peaks of expression of
transcriptionally regulated cell cycle genes to an accuracy of 2 min
(�1% of the cell cycle time). The set of 1,129 cell cycle-regulated
genes was identified by a comprehensive analysis encompassing
all available cell cycle yeast data sets. Our results reveal distinct
subphases of the cell cycle undetectable by morphological obser-
vation, as well as the precise timeline of macromolecular complex
assembly during key cell cycle events.

mitosis � microarrays � yeast � maximum entropy

Eukaryotic cell division is a complex process, with many layers
of regulation at the level of gene transcription, protein

production, localization, modification, and degradation. Many
genes specific to the cell cycle are regulated transcriptionally
(1–5) and are expressed just before they are needed (6). The
precise determination of the moment of maximum expression is,
therefore, important for understanding the cell division process.
The timing of gene expression is also an important factor in
various analyses of gene coexpression networks, evolution of
regulation, global organization of transcription, inferring tran-
scription factor specificities, and many other analyses (7–11).

Previous whole-genome studies of the yeast cell cycle relied on
microarray data from artificially synchronized cultures grown
under nutrient-rich laboratory conditions (1, 3, 5). Under these
typical conditions, cell divisions happen immediately, one after
another, with almost overlapping cell division phases, thereby
hindering accurate timing [see supporting information (SI)
Appendix]. Moreover, Fourier methods have typically been used
for timing of genes (3, 5, 8), but these methods are limited to
genes with one expression peak per cycle and are most accurate
for temporal profiles resembling a sinusoid. A model-based
approach to timing was also developed (12), but it remained
unable to deal with multiple peaks or to achieve a high temporal
resolution. Because of these experimental and methodological
limitations, the timing of the cell cycle transcriptional program
by using logarithmically growing yeast and Fourier methods (3,
5, 13) lacks within-phase resolution (i.e., the variance of expres-
sion peaks of individual genes is comparable to the lengths of cell
cycle phases; see SI Appendix). The timing of gene expression by
using such data and methods, therefore, is not interpretable
beyond assigning transcripts to main cell cycle phases in which
their expression peaks: G1 (gap 1), S (DNA synthesis), G2 (gap
2), M (mitosis), and M/G1 (1, 5).

Here we present a unique approach to the timing of cell
cycle-regulated gene expression. We rely on a recent data set, in
which a naturally synchronized continuous yeast culture pro-
ceeds through �5-h metabolic cycles (yeast metabolic cycle;
YMC) (14) while exhibiting strong and stable cell cycle synchro-
nization. Using the characteristic profile shape of regulated
genes (Fig. 1) to align cell cycles of the whole culture by
maximum-entropy deconvolution, we reveal a high-resolution
timeline of cell cycle transcriptional events in fine detail.

Results
Timing. The recent YMC expression data (14) exhibit strong mod-
ulation of cell cycle-regulated genes in a budding yeast culture (see
SI Fig. 5). On examining the temporal expression profiles of the
YMC data set, we calculated (15) that the average peak-to-trough
expression ratio of the 108 well known cell cycle-regulated genes
(see Table 3 in SI Appendix) is 21, compared with �9 for earlier
synchronization by cdc15 or cdc28 temperature-sensitive mutants
or by alpha pheromone (1, 5). Unlike the previous data (1, 3, 5),
derived from rapidly growing yeast, the YMC data are collected
from a continuous, highly synchronized, slowly growing yeast
culture (14), which allows us to better distinguish peaks of some key
cell cycle genes (Fig. 2). Furthermore, the initial synchronization of
cells undergoing the YMC is achieved simply by starving the cell
population after it reaches high density; this approach does not rely
on the use of temperature-sensitive mutants, the addition of
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Fig. 1. Characteristic temporal profile of cell cycle-regulated genes. Pre-
sented are the raw expression data (14) of several transcripts that peak at
different times: cyclins (CLN3, CLN2, CLB1, and PCL9); a Cdc28p inhibitor
(SWE1); a positive regulator of mitotic exit (SPO12); and an endochitinase,
crucial for cell separation after mitosis (CTS1). y axis, normalized expression
(arbitrary units); x axis, time in minutes.
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pheromone, etc. The metabolically achieved synchrony (14) thus
remains remarkably stable; it has lasted for �100 cycles, whereas
synchronization achieved by other methods deteriorates noticeably
during the first three cycles (5). The stable repetition of temporal
expression patterns over consecutive cycles is an essential require-
ment for applying our deconvolution-based, accurate timing
method. Therefore, we chose to base high-resolution timing solely
on the YMC data (14), whereas other data sets (1, 3, 5) were used
for identification of the set of cell cycle transcriptionally regulated
(CCTR) genes.

We observed that most genes known to be transcriptionally
regulated during the cell cycle share a characteristic profile
shape in the YMC data (Fig. 1). On the basis of f luorescence-
activated cell sorting (FACS) analysis of DNA replication and
the observation of bud appearance (14), we conclude that the
observed broadness of the profile is caused not by long transcript
lifetimes but by individual cells entering the cell cycle at different
times. To correct for the influence of this spread on measured
mRNA concentrations, we modeled the time-shift distribution of
cells entering the cell cycle (see SI Appendix). The shape of that
distribution is strikingly similar to the budded cell count distri-
bution from other cell cycle-synchronized cultures (1), suggest-
ing that this shape is an inherent property of the cell cycle, likely
caused by daughter cells needing more time than mother cells to
grow big enough to divide again (16, 17).

To recover the mRNA concentration in the typical individual
cell, we deconvolved the measured profile by using the common
shape. The intrinsic noise in budding yeast gene expression is low
(18), so we expect our estimated average individual cell expres-
sion timing to be reflective of the majority of actual single cells.
We implemented a deconvolution algorithm adapted to microar-
ray data analysis (see SI Appendix), with regularization based on
the maximum-entropy principle (19). We thus accurately deter-
mined the moment of the gene expression peak by aligning cell
cycles of the whole culture by deconvolution of the observed
expression profiles (see SI Appendix). This method allows the
recovery of single cell expression profiles, which in the microar-
ray measurement are distorted because of averaging mRNA
levels of imperfectly synchronized cells (Fig. 3).

Expression Peaks. For each transcript, we calculated the decon-
volved profiles (see SI Fig. 7) and identified the peaks of
expression (see SI Appendix). Deconvolution of gene expression
profiles allows the discovery of secondary expression peaks, even
when they are not evident in the raw data. Indeed, we find that
many CCTR genes may peak twice per cycle. For example,
deconvolved profiles of histone genes show that all histones
except HTB2 are expressed in two distinct bursts per cycle (SI
Fig. 8): the first occurring in S phase and related to DNA

Fig. 2. Comparison of expression patterns of key cell cycle-regulated genes in slowly growing [YMC (14), Left] vs. rapidly growing [cdc15, alpha, and cdc28 (1,
5)] yeast cultures. (Upper) G2 cyclin CLB1, mitotic transcription factor SWI5, and G1 cyclin CLN3. (Lower) Mitotic cyclin PCL9 and MCM subunit MCM3.
Environment-dependent G1 phase is �10 times longer in YMC than found in previous studies (cdc15, alpha, and cdc28 synchronization), allowing the expression
of key cell cycle genes to be timed with higher accuracy.

A B

C D

E F

Fig. 3. Expression profiles measured for the whole culture differ consider-
ably from single-cell mRNA profiles. Imperfect synchronization of cells results
in broadening of expression profiles measured in the culture (Right), com-
pared with the respective single-cell profiles (Left). The original single-cell
expression profiles (A, C, and E) can be reconstructed from the observed
profiles (B, D, and F, respectively) by using deconvolution. This method can
also be applied when the single-cell expression profile is complex (C and E)
rather than just one short-lived pulse (A).
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replication and the second in G2/M phase (the functional
significance of this second wave is unknown) (Fig. 4C). Another
example is CDC28, discussed below (SI Fig. 10). Secondary

peaks of CCTR genes suggest that they may function at multiple
moments of the cell cycle or that only one of the observed peaks
is cell cycle-related. Examples of calculated peaks are shown in

A

C

D

E

H

F

G

B

Fig. 4. Transcriptional program of the yeast cell cycle. (A and B) Proteins involved in DNA replication initiation, color-coded according to timing of their
expression. The prereplication complex (pre-RC) undergoes several changes before an elongation complex (EC), capable of initiating DNA synthesis, is formed
(24). The order of expression (A) agrees with the order in which gene products are needed (B). In A, dotted outlines denote non-CCTR genes. Note the two groups
of MCM subunits, each containing one nuclear localization signal (NLS). In B, solid outlines denote primary expression peak; dashed outlines denote secondary
(lower scoring) peak. The only exception to just-in-time transcription is ORC1. (C) Timing of CCTR complexes. DSE, daughter-cell-specific expression program; APC
act, APC activation; SPB sat, spindle pole body satellite formation; SPB sep, spindle pole body duplication and separation. (D) Peaks of selected CCTR genes. (E)
Phases and subphases of the cell cycle. Note new prereplicative G1 (P) phase. (F) Histogram of expression peaks of CCTR genes. (G) Peaks of transcripts regulated
by selected cell cycle transcription factors (11, 20, 21, 29, 30). Note the differences in expression of MBF and SBF targets. (H) Histograms of peaks of CCTR genes
involved in selected cell cycle functions. Compare peaks of predicted Cdc28p targets (26) vs. peaks of CDC28 (D).
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Fig. 4D and in Table 4 of SI Appendix (for the full list, see Table
6 in SI Appendix or http://cellcycle.info).

CCTR Genes. The timing results can only be interpreted within the
context of cell cycle-regulated expression if a gene is CCTR. To
identify CCTR genes, we examined available whole-genome data
sets in which known cell cycle-regulated genes exhibited mod-
ulation (1, 3, 5, 14). For each transcript, we constructed a
probabilistic score based on the percentage of earlier proposed
(1, 5) cell cycle transcriptionally regulated genes among the 100
most correlated in each data set (1, 3, 5, 14) (see SI Appendix).
This score identified a high-confidence CCTR set consisting of
694 genes and an extended set of 1,129 genes (see Table 6 in SI
Appendix). We validated these CCTR sets by using experimental
transcription factor binding data (11, 20, 21), as well as tran-
scription factor binding motifs conserved among related fungi
species (22, 23). Both tests showed that our CCTR sets are more
consistent with independent transcription regulation data than
are sets derived from smaller groups of experiments (3, 5) (see
Tables 1 and 2 in SI Appendix). Henceforth, the term ‘‘CCTR
genes’’ refers to the high-confidence set.

Error Estimation. To estimate the robustness of the timing pro-
cedure, we have investigated the extent to which the obtained
peak times are affected by expected errors in the measured
mRNA concentrations (see SI Appendix). We confirmed that the
timing method is very robust; the median value of estimated total
error for predicted peak times is 2 min (see Table 6 in SI
Appendix). Such high-accuracy timing allows annotating of each
transcript to a small fraction of a cell cycle phase and reveals
otherwise undetectable differences in gene expression times.
The complete list of CCTR genes, together with their expression
peaks and error estimates, is available online at http://
cellcycle.info.

Phase and Subphase Assignment. We defined time intervals cor-
responding to the main cell cycle phases (Fig. 4E) by using
expression peaks of known cell cycle genes (see Table 5 in SI
Appendix). The histogram of expression peaks of CCTR genes
(Fig. 4F) reveals two main waves of transcription, separated by
intervals of almost no CCTR transcriptional activity, between
late S and late G2 phases and in most of the G1 phase. This
dramatic variation in transcriptional activity between stages of
the cell cycle has not been described previously (5) (SI Fig. 6).
Beyond prominent expression waves in G1/S–S and G2/M–M, the
histogram in Fig. 4F reveals a previously unidentified (1, 3, 5),
distinct expression wave preceding the start of DNA replication.
In YMC, this wave spans 45 min and encompasses 19% of CCTR
genes. Because the majority of subunits of the prereplicative
complex are expressed in this phase (Fig. 4A), we propose to
designate it the ‘‘prereplicative’’ or ‘‘G1 (P)’’ phase. Other genes
expressed in G1 (P) are involved in preparation for budding (e.g.,
RSR1, BUD13, GIC2, RAX1, PEA2, and BNI4) and in synthesis
of cell wall components (e.g., FKS1, GAS1, and GAS5). In
previous studies, G1 (P) genes were perhaps incorrectly assigned
to different cell cycle phases (1, 5). More than one-third had
been annotated as being expressed in mitosis or M/G1 (1, 5),
including all subunits of the MCM complex and the G1 cyclin
CLN3 (1, 5). Our timing places expression of these genes at the
beginning of the new cycle, suggesting involvement in prepara-
tion for a round of division rather than for entry into extended
G1 phase, which is more consistent with their known biological
function (6, 24).

Another gene expressed in G1 (P) phase is CDC28, the
catalytic subunit of the main yeast cyclin-dependent kinase,
which drives progress through the cell cycle (25). Our study,
which classifies CDC28 as periodic, challenges the established
view (3, 5, 8, 12, 25) that CDC28 is constitutively expressed. We

determined that CDC28 expression peaks twice per cycle, first in
G1 (P) phase and again in early mitosis (Fig. 4C), precisely
coinciding with expression waves of its predicted targets (26)
(Fig. 4H). The periodicity of CDC28 expression in YMC is
strikingly clear (SI Fig. 10; P � 0.00003); it also is not an artifact
of metabolic regulation, because a similar profile of CDC28 had
been earlier observed under different cell cycle synchronization
(1) (SI Fig. 5). The lack of earlier acceptance of CDC28 as
transcriptionally regulated seems to be rather an artifact of the
Fourier methods used (3, 5, 8), which, although convenient, are
unable to deal appropriately with genes expressed twice per cycle
(see SI Appendix).

Our timing results have also clarified when some key cell cycle
genes are expressed. For instance, on the basis of experiments
with rapidly growing yeast (1, 5), CLB1, SWI5, and CLN3 have
all been thought to be expressed during mitosis (1, 5), whereas
our data suggest that G2 cyclin CLB1 is expressed in G2, SWI5
in G2/M, and CLN3 upon reentry to the cell cycle, in G1 (P) (see
Fig. 2). Similarly, we find that the Swi5-activated cyclin, PCL9,
is expressed in mitosis and MCM3 is expressed in G1 (P), and
consequently their expression can be delayed by an arbitrarily
long G1 phase, although, on the basis of experiments with rapidly
growing yeast (1, 5), they were both believed to be expressed in
M/G1 (Fig. 2). Our timing results consistently place the expres-
sion of these key genes just before the time their products are
needed within the cell cycle (6, 24).

Initiation of DNA Replication. The initiation of DNA replication
occurs at the beginning of S phase and requires the prior
assembly and subsequent modifications of the prereplicative
complex (24), which starts in G1 (P) (Fig. 4B). Strikingly, our
timing of the expression peaks of CCTR subunits of MCM,
replicative complex and elongation complex, corresponds with
the exact order in which their gene products are needed (Fig. 4
A and B). The subunits of the origin of replication complex,
ORC2–6, have not previously been classified as transcriptionally
regulated, nor did they pass the stringent criteria of being
accepted as CCTR in this study. Still, applying the deconvolution
timing to their expression profiles reveals that these genes have
expression peaks �10 min before the MCM subunits, exactly
when their products are needed. This observation raises the
possibility that the transcription of ORC2–6 is regulated as a
function of the cell cycle, contrary to established beliefs (1, 3, 5,
8) (Fig. 4A).

A more detailed view reveals that subunits of the MCM
complex are expressed in two groups of three, separated by an
�8-min interval, with each predicted expression group contain-
ing one MCM subunit with a nuclear localization signal (27) (Fig.
4A). These results may provide insight into the dynamics of
MCM complex assembly and transport from cytoplasm into
nucleus (28).

The precision of our timing data reveals that the SBF- and
MBF-activated expression programs, thought to be identically
timed during the mitotic cell cycle (29), actually differ (Fig. 4G).
Unlike MBF, whose targets peak predominantly in G1/S phase,
targets of SBF are also activated in G1 (P) phase and are
generally characterized by a broader time distribution (Fig. 4G).
This conclusion holds, independent of whether SBF and MBF
targets are defined based on evolutionary analysis of conserved
binding sites in 17 related fungus species or on various experi-
mental studies (29, 30).

Cell Cycle-Regulated Complexes. We also timed expression of
several other complexes, such as the spindle pole body (SPB)
(Fig. 4C) (see Table 5 in SI Appendix). We observed especially
tight transcriptional coregulation for complexes active in late G1
and S phase; the elapsed time between expression peaks of the
first and last CCTR subunits of a complex is between 5 min
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(RFA) and 22 min (histones) (Fig. 4C). Transcription of many
non-CCTR subunits of the cell cycle complexes also exhibits
variability, allowing for timing, albeit weak. For example, only
three subunits of RFC are CCTR, although expression of all five
subunits occurs in the same 12-min interval (Fig. 4C). ORC2–6
exhibit even weaker modulation, but interestingly their expres-
sion timing is nevertheless very consistent with the time in which
they function (Fig. 4 A and B). The anaphase-promoting complex
(APC) contains only two CCTR subunits, although the expres-
sion peaks of most of its 16 subunits appear in a time interval
broadly corresponding to mitosis (Fig. 4C). However, some APC
subunits, e.g., Cdh1, seem to be only posttranscriptionally reg-
ulated (31).

We generally find more subunits of the cell cycle-involved
complexes to be CCTR than was the case in previous studies (2,
5, 8) (Fig. 4 and see SI Appendix and http://cellcycle.info). This
difference may be explained by the increased quantity and
improved accuracy of cell cycle expression data, together with
our comprehensive approach to identifying CCTR genes. In
addition to the examples discussed above and complexes in-
volved in DNA replication initiation, we find more components
of the septin ring of the mother-bud neck to be CCTR. Previous
studies (2, 3, 5, 8) each classified only one septin (either CDC11
or CDC10) as cell cycle-regulated, whereas we classify three
components of the septin ring (CDC11, CDC12, and CDC3) as
CCTR. Our classification of CDC11, CDC12, and CDC3 as
coregulated is independently supported by timing results (not
used for classification), which places their expression peaks
within an �6-min interval in late S phase.

Discussion
Until now, the cell cycle has been studied in logarithmically
growing yeast cultures, in which virtually every cell divides
during each oscillation (1, 3, 5). In the YMC, only about half of
the cells divide in every oscillation of the culture (14). Conse-
quently, the average expression levels of the CCTR genes in the
YMC culture may be expected to be lower than in logarithmically
growing cultures. However, because our analysis does not de-
pend on absolute fold-change ratios, the fact that only half of the
population goes through a cell cycle is not a hindrance. Further-
more, the YMC system offers many advantages, including stable
synchronization and slow growth, that allow us to better distin-
guish between consecutive stages of the cell cycle.

It is possible, however, that some of the CCTR genes periodic
in the YMC are regulated as a part of the metabolic oscillation,
independent of the cell cycle. Therefore, we have used expres-
sion patterns from all budding yeast cell cycle data sets for
classification of genes as CCTR. Still, the YMC condition
increases the number of genes in our CCTR set, but we view this
as a reflection of the cell cycle under a different set of natural
conditions, rather than as an artifact of metabolically induced
synchrony.

In previous cell cycle studies, two types of synchrony have been
used (32–34): (i) induced synchrony, which forces cells to
synchronize by some intervention such as pheromone arrest or
the use of temperature-sensitive cdc mutants, and (ii) selection
synchrony, which selects a cohort of cells at the same cell cycle
stage, as in the elutriation method. Although it has been argued
that selection methods are theoretically superior (35), so far for
budding yeast they have resulted in whole-genome cell cycle data
of inferior quality as compared with the intervention method (5).
The cell cycle synchronization method we use here is of a third
type. It is more a natural state of metabolic synchrony than an
intervention method because, although an initial starvation is
necessary to induce YMC synchrony, unlike in all other inter-
vention methods (1, 5, 32), the synchrony remains stable (14).

How is the timing of gene expression that we describe here
mirrored at the level of proteins? The key factor here is protein

half-life: the more short-lived the protein, the closer the protein
concentration correlates with transcript concentration. A recent
whole-genome study of protein half-lives in budding yeast (36)
reports that known cell cycle proteins are especially short-lived.
These data show as well that our CCTR set is significantly
enriched in rapidly degraded proteins, confirming that studying
the timing of CCTR gene expression is a valuable proxy for
understanding the temporal orchestration of the cell cycle
proteome.

The deconvolution-based timing method we developed can
also be applied to cell cycle data from other species (1, 4, 13,
37–39) and to analysis of other temporal phenomena with
models of cell population synchrony, such as those during
circadian rhythms (40) or development (41). One can judge the
potential advantages of applying our methods by examining the
power spectrum of the temporal profiles in question. The
advantages of applying deconvolution will be greatest when
squared magnitudes of discrete Fourier modes corresponding to
multiplicities of the primary frequency are a measurable con-
tribution to the power spectrum.

In summary, the precise timing of gene expression, using data
from a highly synchronized continuous culture, has revealed the
sequence of cell division events in fine detail, thereby providing
a reference for defining cell cycle stages and studying individual
gene functions. We have observed a prereplicative expression
wave, occurring at the crucial time before the start of DNA
replication. Our work has also enriched the description of
eukaryotic cell cycle transcription, supplying detailed informa-
tion on cell cycle progress under nutrient-poor conditions, which
are perhaps more reflective of natural yeast growth conditions
in the wild. From our analysis, we infer that just-in-time tran-
scription is more prevalent in cell cycle regulation than previ-
ously recognized. The confinement of expression of genes
sharing the same function to specific time intervals within the
cycle (Fig. 4H) can be helpful in predicting gene function (SI Fig.
9). Moreover, the striking correlation between genes having a
related function and the timing of their expression could result
from the need for economical use of transcripts and proteins.
Although phenotypes corresponding to the loss of such temporal
optimizations could be difficult to observe, they might still be
subject to natural selection in species such as yeast, which have
a large effective population size.

Methods
Typical Profile Shape. To correct for the influence of imperfect cell
cycle synchrony on measured mRNA concentrations, we mod-
eled the time-shift distribution of cells entering the cell cycle.
Using the common profile, we describe the time-shift distribu-
tion as an exponent of a fourth-degree polynomial, with the full
width at half maximum of 48 min (see SI Appendix).

Deconvolution Algorithm. The measured profile, M, is the convo-
lution of the individual cell profile, f, with the time-shift distri-
bution h:

M�t� � � f�t � ��h���d� .

To find f, we optimize the following functional consisting of
goodness-of-fit and regularization terms:

�
i

��M�ti� � � f�ti � ��h���d���� � t i�� 2

� A� f��� log f���d� ,
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where the sum is over all measurements, A corresponds to the
amount of regularization applied, and � is the expected error of
each measurement (see SI Appendix and SI Fig. 7).

Timing. For each of the CCTR genes, we calculated the decon-
volved profiles and identified the peaks of expression. Significant
peaks were selected based on a heuristic score that included peak
height, width, and shape (see SI Appendix). Using deconvolved
gene expression profiles, we were able to observe secondary
(lower-scoring) expression peaks, even when they were not
evident in the raw data.

Error Estimation. To estimate the robustness of the timing pro-
cedure, we have investigated the extent to which the obtained
peak times are affected by expected errors in the measured
mRNA concentrations. Using Monte Carlo simulations (3,456
mock microarrays) we estimated the accuracy of peak time
determination for all predicted CCTR genes (see SI Appendix).
We confirmed that the timing method is very robust; the median
value of estimated total error for predicted peak times is �2 min.

Physiological Time. To align precisely the three measured cycles in
the YMC (which vary in length up to 11.5 min), we converted all
measurement times into physiological time, using the rapid changes
in dissolved oxygen concentrations as a reference (see SI Fig. 7 and
SI Appendix). Thus, every measurement is assigned a physiological
time between 0 and 300 min, with minute 0 corresponding to the
point of maximal dissolved oxygen consumption. The resulting
correction in timing is relatively small. To correct for residual
long-term changes, logarithmic detrending has been applied to
transcript concentrations. All timing results presented in SI Appen-
dix and Fig. 4 are expressed in physiological time.

The gene expression data used for gene timing were provided by the
laboratory of S.L.M. in the Department of Biochemistry at University of
Texas Southwestern Medical Center. We thank G. Sherlock for the
complete aggregate score for the Spellman et al. (5) data; J. Ihmels, N.
Barkai, and A. Tanay for making available their sequence data; and A.
Pertsemlidis, C. Wojcik, S. Altschuler, and L. Wu for helpful suggestions.
This work was supported by National Institutes of Health Grant GM
74942 (to Z.O., M.R., and A.K.) and a Helen Hay Whitney Foundation
Postdoctoral Fellowship (to B.P.T.).
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